First record of *Leiostracus demerarensis* (L. Pfeiffer, 1861) from Brazil (Gastropoda, Orthalicoida), with a taxonomic reassessment

Rodrigo Brincalepe Salvador¹, Andre C. De Luca², Daniel Caracanhas Cavallari³, Carlo Magenta Cunha⁴

Corresponding author: Rodrigo B. Salvador, salvador.rodrigo.b@gmail.com

Abstract

We report the first Brazilian record of *Leiostracus demerarensis* (L. Pfeiffer, 1861) from Pará and Maranhão states. The distribution of this species now comprises Guyana, Suriname, French Guiana, and northern Brazil. Furthermore, given the uncertainty in generic and familial allocation of this species (either *Bostryx* Troschel, 1847, Bulimulidae, or *Leiostracus* Albers, 1850, Simpulopsidae), we used the barcoding segment of the COI gene to ascertain its classification in Simpulopsidae, retaining it as *Leiostracus demerarensis*. Moreover, *Simpulopsis luteolus* (Ancey, 1901) is also reported for the first time from Pará state.

Keywords

Bostryx, Bulimulidae, Maranhão, Pará, Simpulopsidae, Stylommatophora.

Introduction

Mollusks, especially freshwater and terrestrial, have been widely recognized as one of the most vulnerable animal groups on the planet. These animals are under constant pressure as their environments are increasingly altered and exploited by humans, resulting in very high extinction rates. In this gloomy scenario, many species are vanishing before they had the chance to be studied (Lydèrard et al. 2004; Régnier et al. 2009). The Brazilian land snails are not an exception to this rule, especially in face of recent political changes and the consequent increasing rates of deforestation (Nature Editorials 2018), which makes studying these animals an urgent task (Salvador and Simone 2015; Salvador 2019).

Recent ornithological expeditions to Pará state, northern Brazil, also acquired several land snail specimens. Among these, we identified representatives of *Leiostracus demerarensis* (L. Pfeiffer, 1861), a species previously unrecorded from Brazil. Herein, we report these new records and use the barcoding segment of the COI gene to ascertain the classification of this species, which is controversial in the literature.

Methods

The specimens studied herein were collected by ACDL in two localities in Pará state, Brazil (Fig. 1): (1) Jacaracanga municipality, Thaimacu Lodge property, where live specimens were found over dead leaves on
the leaf litter and on narrow branches of small bushes, at a maximum height of 1.5 m. The locality was a second-growth forest with the understory dominated by a dense bamboo thicket (*Guadua* sp.).

(2) Marabá municipality, Vila Itainópolis, where live specimens were found on the trunks of trees and bushes, from 1 to 1.5 m high, on a dense and humid secondary “terra firme” forest fragment. Specimens were fixed and preserved in ethanol 98%, and deposited in the following malacological collections: CMRP, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (Ribeirão Preto, Brazil); MZSP, Museu de Zoologia da Universidade de São Paulo (São Paulo, Brazil); NMNZ, Museum of New Zealand Te Papa Tongarewa (Wellington, New Zealand). Additional specimens were observed alive by ACDL, but not collected, in Canaã dos Carajás municipality (Pará state) and Bom Jardim municipality (Maranhão state).

One randomly selected adult specimen from each locality had a small section of the foot clipped for molecular study. DNA extraction was conducted with QIAGEN DNeasy® Blood & Tissue Kit, following standard protocol. The marker targeted was the barcoding fragment of the mitochondrial COI gene (primers LCO and HCO described by Folmer et al., 1994), with circa 650 bp. PCR protocol as follows: (1) initial denaturation at 96 °C (2 minutes); (2) denaturation at 94 °C (30 seconds); (3) annealing at 48 °C (1 minute); (4) extension at 72 °C (2 minutes); (5) repeat steps (2) to (4) 34 times, for a total of 35 cycles; (6) final extension at 72 °C (5 minutes). The PCR products were quantified via agarose gel electrophoresis, cleaned following standard ExoSAP-IT™ protocol (Affymetrix Inc.), and Sanger sequenced. Resulting sequences were assembled and quality-checked in Geneious Prime (version 2019.0.3,
Results

New records. BRAZIL • 18 specimens; Pará state, Jacareaçanga municipality, Thaïmacu Lodge property; 09°05′45″S, 056°37′12″W; Oct. 2017; A.C. De Luca leg.; over dead leaves on leaf litter; GenBank: MN175957; CMRP 861 (12 specimens), MZSP 152044 (1), MZSP 152045 (1), NNMZ M.328328 (4). BRAZIL • 4 specimens; Pará state, Marabá municipality, Vila Itainópolis; 05°39′30″S, 049°28′54″W; Nov. 2016; A.C. De Luca leg.; on the trunks of trees and bushes; GenBank: MN175958; CMRP 867 (2 specimens), NNMZ M.328329 (2).

Additional specimens were observed alive (Fig. 1) in: (1) Canãã dos Carajás municipality (Pará state), on the leaves of bushes, around 1.5 m high, on a transitory forest between the “terra firme” and “canga” types of forest. The latter type is characterized by open grassy vegetation growing on rocky iron-rich soils (Mota et al. 2018). (2) Bom Jardim municipality (Maranhão state), specimens were only found as empty shells on the ground in “terra firme” forest, characterized by sandy soil and an abundance of Babacu palm trees (Attalea sp.).

Other specimens collected in Jacareaçanga include representatives of Aperostoma fulvonit Bartsch & Morrison, 1942 (vouchers CMRP 862, CMRP 864), Drymaeus ribeiroi Ihering, 1915 (CMRP 860, CMRP 863), Drymaeus sp. (not collected), Psadara rugifera (Dohrn, 1882) (CMRP 859), and Streptariemon extraneus Haas, 1955 (CMRP 865). Other specimens collected in Marabá include representatives of Aperostoma blanchetiana (Moricand, 1826), Corona duckei Ihering, 1915, Euglandina irakita Jardim, Abbate & Simone, 2013, Helicina laterculus F.C. Baker, 1914, Simpulopsis luteolus (Ancy, 1901) (CMRP 884), and Ringicella ringens (Linnaeus, 1758). All these species are already known from Pará state (Simone 2006), with the exception of Simpulopsis luteolus (Fig. 2), which represents the first report of the species for the state. Otherwise, this species was only known from Goiás state to the south (Simone 2006).

Discussion

The present species was originally described as Bulimus demerarensis, with the type locality at Demerara, Guyana (Pfeiffer 1861). A second species, Drymaeus (Leiostracus) ruthveni H.B. Baker, 1926, described from Dunoon, Guyana (Baker 1926), was later brought into its synonymy (Breure 1978; see also Breure and Ablett 2015: figs 21vi–viii), as well as consistent with other published images of the species (Massemin et al. 2009; Muratov and Gargominy 2011). The most important features for identification are the protoconch sculpture (numerous delicate spiral striae) and whorl count (ca ½ whorls), the relatively small shell size for the genus, the peripheral angulation on the median portion of the body whorl, and the color pattern (Pilsbry 1897–1898; Muratov and Gargominy 2011). For a description of the species anatomy, see Muratov and Gargominy (2011).
the “division of the spermathecal duct into an enlarged distal part and a slender proximal part” (Muratov and Gargominy 2011: 614; see also Breure 1978, 1979). Nevertheless, Breure and Ablett (2015) considered this evidence insufficient for the reclassification and maintained the classification in Leiostracus. These authors argued that Bostryx and Leiostracus belong to two distinct orthalicoid families (Bulimulidae and Simulpopsidae, respectively) according to the most recent molecular studies (Breure and Romero 2012) and concluded that further evidence was needed to support the new classification of B. demerarenisis. Furthermore, Bostryx has an Andean distribution, with a single species reported from Venezuela (Breure 1979; Muratov and Gargominy 2011), which is geographically removed from the distribution of Leiostracus demerarenisis.

We addressed this matter by sequencing the barcoding segment of the COI gene and including the present specimens of L. demerarenisis in the dataset of the Orthalicoid phylogeny published by Breure and Romero (2012). The results of our Bayesian analysis showed that the species is nested in Simulpopsidae, forming a clade with the representative of this family (genus Simulpopsis Beck, 1837) with a posterior probability of 0.97 (Supplementary Material; the two sequenced L. demerarenisis specimens clustered together with a posterior probability of 1.0). Given this new insight and the species morphological features (small size, peripheral angulation on the body whorl, and protoconch sculpture), our work supports the allocation in Simulpopsidae. As such, we retain the classification as Leiostracus demerarenisis.

The previously known distribution of the species comprises Guyana, Suriname, and French Guiana (Massemin et al. 2009; Muratov and Gargominy 2011). The new records reported herein extend this species’ distribution to Brazil, with four distinct localities in two neighboring states (Fig. 1): Jacareacanga, Canãa dos Carajás and Marabá (Pará state); Bom Jardim (Maranhão state). These localities, while still belonging to the vast Amazon biome, are outside the Guyana Shield and south of the Amazon River, indicating that the species is widespread over a potential geographical barrier. The two Brazilian specimens sequenced show some genetic divergence from one another (Supplementary Material), but it is presently not possible to know the divergence, if any, from the northern Guyanese population.

Acknowledgements
We are deeply grateful to Eunice Seravali, Marina M. Barros, and João C.M. Lutz for encouraging the research and providing the infrastructure at Thaimacu Logde; Lourival Mourão, Natal Cândido and Gustavo H. Gonçoroski for field assistance; to Barbara M. Tomotani for lab assistance; to Bram Breure, Gabriela Cuezzo, and Carl Christensen for the careful and helpful review. RBS acknowledges the bequest of Bruce Fraser Hazelwood Fund and the NMNZ. DCC acknowledges the support of Centro para Documentação da Biodiversidade, FFCLRP (shell photographs). Collection permits were granted by the Instituto Chico Mendes de Conservação da Biodiversidade (SISBIO license 57969).

Authors’ Contributions
ACDL collected the specimens. DCC prepared the figures. RBS conducted genetic analysis. All authors contributed to species identification and writing of the manuscript.

References
Pfeiffer L (1861) Diagnosen neuer Heliceen. Malakozoologische Blätter 8: 11–16.
Supplementary Material

Figure S1. Bayesian inference tree of COI marker.

Appendix

Below are listed the COI sequences of other Orthali-coidea species, obtained from the work of Breure and Romero (2012), used to ascertain the classification of the species studied herein. The list is organized by family and species (in alphabetical order), followed by the respective GenBank accession number. **Bulimulidae: Bostryx aequorii** Weyrauch, 1960 JF514623; **Bostryx bilineatus** (Sowerby I, 1833) JF514637; **Bostryx edmundi** Breure and Neubert, 2008 JF514622; **Bostryx longispira** Weyrauch, 1960 JF514624; **Bostryx stroboli** Parodiz, 1956 JF514636; **Bostryx superbus** Weyrauch, 1967 JF514621; **Bulimus diaphanus** (L. Pfeiffer, 1854) JF514633; **Bulimus guadalupensis** (Brugiére, 1789) JF514630; **Bulimus hummelinki** (Breure, 1974) JF514629; **Bulimus sporadicus** (d’Orbigny, 1835) JF514632; **Bulimus tenuissimus** (d’Orbigny, 1835) JF514631; **Drymaeus inusitatus** (Fulton, 1900) JF514648; **Drymaeus latincutus** (Guppy, 1868) JF514646; **Drymaeus multifasciatus** (Férrusac, 1821) JF514647; **Drymaeus vexillum** (Broderip, 1832) JF514625; **Naesiotus quitensis** (L. Pfeiffer, 1848) JF514635; **Naesiotus stenogyroides** (Guppy, 1868) JF514650; **Neopetraeus tessellatus** (Shuttleworth, 1852) JF514627; **Rabdotus alternatus** (Say, 1830) JF514638; **Scutalus chileensis** Weyrauch, 1967 JF514628. **Odontostomidae:** **Clessinia cordovana cordovana** (L. Pfeiffer, 1856) JF514618; **Clessinia cordovana stelzneri** (Doering, 1875) JF514617; **Clessinia pagoda** Hylton Scott, 1967 JF514613; **Cyclodontina guarani** (d’Orbigny, 1835) JF514619; **Plagiodontes multiplicatus** Doering, 1874 JF514620; **Spixia pervarians** (Haas, 1936) JF514614; **Spixia philippii** (Doering, 1875) JF514612; **Spixia popana** (Doering, 1877) JF514616; **Spixia tucumanensis** (Parodiz, 1941) JF514615. **Simpulopsisidae:** **Leiostracus perlucidus** (Spix, 1827) JF514640; **Simpulopsis decussata** L. Pfeiffer, 1856 JF514639. The sequences of the two outgroup taxa were obtained from GenBank: **Acroloxus lacustris** (Linnaeus, 1758) AY282581 (Acroloxidae); **Planorbis planorbis** (Linnaeus, 1758) EF012175 (Planorbidae).